BeagleBone Cookbook Webinar Series
Recipe #5
I/O with C and mmap()

December 1, 2015
Jason Kridner
Co-author of BeagleBone Cookbook
Board member at BeagleBoard.org Foundation
Sitara Applications Engineering at Texas Instruments
BeagleBone Black
Ready to explore and use in minutes

Truly flexible open hardware and software development platform

All you need is in the box

Proven ecosystem from prototype to product

BeagleBone Black – the most flexible solution in open-source computing

- Ready to use
 - USB client network
 - Built-in tutorials
 - Browser based IDE
 - Flashed w/Debian
- Fast and flexible
 - 1-GHz Sitara ARM
 - 2x200-MHz PRUs
 - 512-MB DDR3
 - On-board HDMI
 - 65 digital I/O
 - 7 analog inputs
- Support for numerous Cape plug-in boards
 http://beaglebonecrapes.com

~$50
BeagleBone Black board features

10/100 Ethernet

USB Host
Easily connects to almost any everyday device such as mouse or keyboard

microHDMI
Connect directly to monitors and TVs

microSD
Expansion slot for additional storage

512MB DDR3
Faster, lower power RAM for enhanced user-friendly experience

DC Power

Serial Debug

Boot Button

Expansion headers
Enable cape hardware and include:
• 65 digital I/O
• 7 analog
• 4 serial
• 2 SPI
• 2 I2C
• 8 PWMs
• 4 timers
• And much much more!

1-GHz Sitara AM335x ARM® Cortex™-A8 processor
Provides a more advanced user interface and up to 150% better performance than ARM11

Power Button

LEDs

Reset Button

USB Client
Development interface and directly powers board from PC

4-GB on-board storage using eMMC
• Pre-loaded with Debian Linux Distribution
• 8-bit bus accelerates performance
• Frees the microSD slot to be used for additional storage for a less expensive solution than SD cards

Power Button

Money saving extras:
• Power over USB
• Included USB cable
• 4-GB on-board storage
• Built-in PRU microcontrollers
Simple browser-based interactions
http://beagleboard.github.io/bone101
Cloud9 IDE hosted locally
Zero install and exposes command-line
10,000s of developers building connected devices today

- Medical analysis, assistance and information management
- Home information, automation and security systems
- Home and mobile entertainment and educational systems
- New types of communications systems
- Personal robotic devices for cleaning, upkeep and manufacturing
- Remote presence and monitoring
- Automotive information management and control systems
- Personal environmental exploration and monitoring
BeagleBone Cookbook

http://beagleboard.org/cookbook

- 99 recipes covering
 - Basics
 - Sensors
 - Displays and outputs
 - Motors
 - Internet of things
 - Kernel
 - Real-time I/O
 - Capes
Prerequisites

• Connect to the board per recipe 1.2
 – http://beagleboard.org/getting-started

• Verify the software image per recipe 1.3 and potentially updating per recipe 1.9

• Components
 – BeagleBone Black
 – Push button or 3.3V function generator
 – Jumper wire
 – LED with resistor or (preferred) oscilloscope
Connect a button and an LED

http://beagleboard.org/Support/bone101/#headers-gpio

Input on GPIO_7 and output on GPIO_31
Understanding Real-Time

- Throughput vs. latency
- Hard, soft and firm
- Context switching
- Task scheduling
- Linux RT_PREEMPT
- Using ‘strace’ and ‘oprofile’
What are `/dev/mem` and `mmap()`?

- `/dev/mem` is a character device that is an image of the main physical memory of the computer.
- `mmap()` is a system function to map devices into (virtual) memory.
- Together, they can be used to provide an application that has only a virtual memory space with access to specific physical addresses.
- Directly accessing the registers bypasses system calls and avoids context switches.
- This is really just a step towards writing your own device driver.
Recipe 8.4: I/O with devmem2

bone# wget http://free-electrons.com/pub/mirror/devmem2.c
bone# gcc -o devmem2 devmem2.c && mv devmem2 /usr/local/bin/
bone# ln -s /sys/class/gpio
bone# echo 31 > gpio/export
bone# echo out > gpio/gpio31/direction
bone# echo 1 > gpio/gpio31/value
bone# echo 0 > gpio/gpio31/value
bone# devmem2 0x44E07138
bone# devmem2 0x44E07190 w 0x80000000
bone# devmem2 0x44E07194 w 0x80000000
bone# devmem2 0x44E07138
Recipe 8.4: I/O with C and mmap()

bone# wget https://raw.githubusercontent.com/BeagleBoneCookbook/firstEdition/master/08realtime/pushLEDmmap.c
bone# wget https://raw.githubusercontent.com/BeagleBoneCookbook/firstEdition/master/08realtime/pushLEDmmap.h
bone# gcc -O3 –o pushLEDmmap pushLEDmmap.c
bone# ./pushLEDmmap
^C
More

 - http://bit.ly/1B4Cm45
- StarterWare for Sitara
 - http://www.ti.com/tool/starterware-sitara
- Enabling RT_PREEMPT
 - http://elinux.org/Beagleboard:BeagleBoneBlack_Debian#4.1.x-ti
- Learning to write a device driver in Recipe 7.2
- Program GPIO with PRU in Recipe 8.6
- Shortcuts to updates and examples from the book
 - http://beagleboard.org/cookbook